
DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics

Renjie Pi1* Weizhong Zhang2*† Yueqi Xie1* Jiahui Gao3 Xiaoyu Wang1

Sunghun Kim1 Qifeng Chen1†

1The Hong Kong University of Science and Technology
2Fudan University 3The University of Hong Kong

Abstract

The Federated Learning (FL) paradigm is known to face
challenges under heterogeneous client data. Local training
on non-iid distributed data results in deflected local optimum,
which causes the client models drift further away from each
other and degrades the aggregated global model’s perfor-
mance. A natural solution is to gather all client data onto
the server, such that the server has a global view of the en-
tire data distribution. Unfortunately, this reduces to regular
training, which compromises clients’ privacy and conflicts
with the purpose of FL. In this paper, we put forth an idea to
collect and leverage global knowledge on the server without
hindering data privacy. We unearth such knowledge from
the dynamics of the global model’s trajectory. Specifically,
we first reserve a short trajectory of global model snapshots
on the server. Then, we synthesize a small pseudo dataset
such that the model trained on it mimics the dynamics of
the reserved global model trajectory. Afterward, the synthe-
sized data is used to help aggregate the deflected clients into
the global model. We name our method DYNAFED, which
enjoys the following advantages: 1) we do not rely on any
external on-server dataset, which requires no additional cost
for data collection; 2) the pseudo data can be synthesized in
early communication rounds, which enables DYNAFED to
take effect early for boosting the convergence and stabilizing
training; 3) the pseudo data only needs to be synthesized
once and can be directly utilized on the server to help aggre-
gation in subsequent rounds. Experiments across extensive
benchmarks are conducted to showcase the effectiveness of
DYNAFED. We also provide insights and understanding of
the underlying mechanism of our method.

1. Introduction
Federated learning (FL) has become a popular distributed

training paradigm to alleviate the server’s computational bur-

*Joint first authors. Code is available at this link.
†Correspondence to Weizhong Zhang (weizhongzhang@fudan.edu.cn)

and Qifeng Chen (chenqifeng22@gmail.com)

Match

Client 2

"$

!!"#

Global Server

Send Local !$
%

Client 1 Client M

…

(1)

(2)

!!"#!*

Trajectory List
{!!, !"…!&}

#"$"!&"$

"!!"'

"!!"#
Sample

Send Global ! %

Figure 1. Illustration of DYNAFED. Firstly, we run the standard
FedAvg for L communication rounds and save the checkpoints
to form a trajectory of the global model at the server. Then, we
synthesize a pseudo dataset Dsyn, with which the network can be
trained to mimic the dynamics of the global trajectory. In this way,
the knowledge that captures the essential information about the
global data distribution is transferred from the global dynamics to
Dsyn. Afterward, Dsyn is adopted to help aggregate the deflected
clients into the global model at the server.

den and preserve clients’ data privacy [3, 23, 31, 45]. In the
FL paradigm, the clients only have access to their private
datasets, while the server is responsible for aggregating the
clients’ updates into a global model. The most prevalent
approaches in FL are based on local-SGD [34] (also referred
to as FedAvg), where the client model is updated locally for
multiple steps before being sent and merged on the server.
Such approaches save communication costs and perform
well given the client data are iid-distributed. However, in
real-world applications such as healthcare [22,23,36,37] and
bio-metrics [2], the client data usually demonstrates hetero-
geneity (highly non-iid), which deflects the local optimum
from the global optimum [24, 32, 52] and makes the locally

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12177

https://github.com/pipilurj/DynaFed

trained clients biased. Therefore, naively averaging the client
models results in slow convergence and performance drop.

To alleviate the difficulty of training under heterogeneity,
a few lines of work have been frequently discussed. The first
line attempts to modify the local training process, including
imposing regularization on the client models [1, 24, 29, 31]
and data sharing or augmentation [35, 38, 48, 52]. How-
ever, these solutions have a high requirement for the server’s
control of local clients. An orthogonal line focuses on
refining the global model in the server aggregation pro-
cess [6, 33, 40, 44, 46]. The majority of these methods typi-
cally require a large external dataset on the server, then use it
to align the outputs of the global model with that of the client
ensemble [6, 15, 33, 44]. Unfortunately, such a large-scale
task-related dataset is often hard to acquire in reality. To
circumvent this limitation, a few data-free knowledge distil-
lation (KD) approaches are recently proposed [50,53]. These
methods attempt to transfer the knowledge contained in the
global model to a generator, which is subsequently leveraged
to produce pseudo data to either help local training at the
clients [53] or finetune the global model at the server [50].
It is clear that these methods require a global model with
reasonable performance to ensure the generation of helpful
pseudo data. However, such requirement is hard to achieve
in practice since the global model often performs poorly
under heterogeneity, especially in the early rounds of train-
ing. Other solutions include personalized FL [16, 27, 30, 39],
simlarity clustering [4, 10, 13], meta learning [21, 28], etc.

Even though the above-mentioned works propose tech-
niques to alleviate the challenges posed by heterogeneity
to some extent, they do not tackle the issue from its root
cause: the data is unevenly scattered at different clients and
is kept locally due to privacy concerns, which is also the
main obstacle for training an accurate global model. Ideally,
imagine if we can collect all the client data to the server,
then training can be directly conducted at the server, and the
heterogeneity issue no longer exists. However, this reduces
to regular training and conflicts with the original purpose of
FL to protect client privacy. We then raise a natural ques-
tion: is it possible to derive the essential information about
the global data distribution on the server to help training
without compromising client privacy?

Despite the global model typically performing poorly due
to heterogeneity, the changes in its parameters are steered
jointly by the data scattered at different clients. Therefore,
the update dynamics of the global model contain knowledge
about global data distribution. Driven by this intuition, we
propose DYNAFED to explicitly unearth such knowledge hid-
den in the global dynamics and transfer it to a pseudo dataset
Dsyn at the server. Dsyn can then approximate the global
data distribution on the server to aid aggregation. More
specifically, inspired by recent works in dataset condensa-
tion [5,41,51], we formulate the data synthesis process into a

learning problem, which minimizes the distance between the
trajectory trained with Dsyn and the global model trajectory
derived with D. Fine-tuning the aggregated global model
with Dsyn effectively alleviates the performance degradation
caused by deflected clients. An appealing feature of our
DYNAFED is that the data can be synthesized using just
the global model’s trajectory of the first few rounds, which
enables Dsyn to take effect and help aggregation from early
rounds. In addition, the synthesizing process only needs
to be conducted once in practice, after which the derived
Dsyn can be directly applied in subsequent rounds to help
aggregate the deviated client models.

Notably, our framework can be readily applied to the
majority of FL approaches, since we rely on only the his-
tory of the global model’s parameters for synthesizing Dsyn,
which is available in the conventional setting of FedAvg-
based methods. Furthermore, because we extract global
knowledge using the global dynamics, rather than any client-
specific information as in [12,17,18,20,47], the derived Dsyn
comprises of information mixed with the entire global data
distribution, thus prevents leakage of client privacy.

Our DYNAFED possesses the following advantages com-
pared with previous approaches: 1) It leverages the knowl-
edge of the global data distribution to alleviate the aggre-
gation bias of the global model without depending on any
external datasets; 2) DYNAFED is able to generate informa-
tive data in the early rounds of federated learning, which
significantly helps convergence and stabilizes training in sub-
sequent rounds; 3) Compared with [50, 53], which need to
keep updating the generator throughout all communication
rounds, the data synthesis process in our method only needs
to be done once, which reduces the computational overhead.
In summary, we make the following contributions:

• We propose a practical approach named DYNAFED
for tackling the heterogeneity problem, which extracts
and exploits the hidden information from the global
model’s trajectory. In this way, the server can access
the essential knowledge of the global data distribution
to reinforce aggregation;

• We experimentally show the synthesized dataset helps
stabilize training, boost convergence and achieve signif-
icant performance improvement under heterogeneity;

• We provide insights and detailed analysis into the work-
ing mechanisms of the proposed DYNAFED both exper-
imentally and theoretically.

2. Related Work
Regularization-based Methods FedAvg [34] is the most
widely used technique in FL, which periodically aggregates
the local models to the global model in each communication
round. FedProx [31] proposes to impose a proximal term
during local training, such that the local model does not

12178

drift too far from its global initialization; Scaffold [24] in-
troduces a control variate and variance reduction to alleviate
the drift of local training. Moon [29] proposes to leverage
the similarity between model representations to regularize
the client local training. FedDyn [1] introduces the linear
and quadratic penalty terms to correct the clients’ objective
during local training. These methods are orthogonal to our
approach and can be jointly used.

Data-Dependent Knowledge Distillation Methods This
line of work attempts to distill client ensemble knowledge
into the global model. [33] proposes to use an unlabeled
external dataset on the server to match the global model’s
outputs with that of the client ensemble. On top of this, [6]
further proposes to sample and combine higher-quality client
models via a Bayesian model ensemble. Subsequently, some
advanced techniques, such as pre-training [15] and weighted
consensus distillation scheme [8] are proposed. These meth-
ods typically require a large amount of data following similar
distribution as the task data, which is usually hard to acquire
in practice. Besides, these methods need to conduct KD
with a large dataset in every communication round, which
introduces prohibitive computational overhead.

Data-free Knowledge Distillation Methods Recently, a
few works have proposed to perform KD in a data-free man-
ner by synthesizing data with generative models [50,53]. [53]
proposes to train a lightweight generator on the server, which
produces a feature embedding conditioned on the class in-
dex. The generator is then sent to the clients to regularize
local training. [50] trains a class conditional GAN [14] on
the server, where the global model acts as the discriminator.
The pseudo data is then used to finetune the global model.
These methods all depend on the global model for training
the generator. Unfortunately, the model performance is often
poor under high data heterogeneity, which makes the quality
of the pseudo data questionable. On the other hand, due to
the use of update dynamics of the global model rather than
an individual model, our method can synthesize high-quality
data containing rich global information even if the global
model performs poorly.

3. Preliminary
Federated Learning. Suppose we have M clients in

a federated learning system. For each client m ∈ [M], a
private dataset Dm = {(xi, yi)}|Dm|

i=1 is kept locally. The
overall optimization goal of the FL system is to jointly
train a global model which performs well on the combi-
nation of local data, denoted as D = ∪M

m=1Dm, where
D is from a global distribution. Let αm = |Dm|

|D| denote
the portion of data samples on client m. Let w ∈ Rd de-
note the model parameter to optimize, and Lm(w,Dm) =

1
|Dm|

∑
ξ∈Dm

ℓ(w, ξ) denote the empirical risk with the loss

function ℓ(·, ·). The optimization problem of a generic FL
system can be formulated as follows:

min
w
L(w,D) =

M∑
m=1

αmLm(w,Dm). (1)

FedAvg. The main-stream solutions of Eqn. 1 rely on
local-SGD to reduce the communication cost of transfer-
ring gradients. FedAvg [34] is the most prevalent approach,
which uses a weighted average to aggregate the locally
trained models into a global model in each communication
round. Typically, not all the clients participate in every com-
munication round. Suppose Mc ⊂ [M] is the set of the par-
ticipated clients in the c-th round, and P c =

∑
m∈Mc αm.

The aggregation process for the global model wc+1 at the
end of c-th communication round can be formulated as:

wc+1 =
1

P c

∑
m∈Mc

αmwc
m, (2)

where wc
m denotes the client m’s locally trained model. Af-

ter the aggregation, the updated global model wc+1 is then
distributed to and client and utilized to initiate the c+ 1-th
round of the training.

4. Proposed Method
In this section, we introduce our proposed method DY-

NAFED. The overall framework is illustrated in Figure 1.
Firstly, we collect a trajectory of the global model’s up-
dates in the early phase of federated training, with which we
construct a synthetic dataset Dsyn = {X,y} on the server
side. Then, we utilize Dsyn to aid the server-side aggregation,
which effectively helps recover the performance drop caused
by deflected local models.

4.1. Acquiring Global Knowledge by Data Synthesis
Our goal is to construct a pseudo dataset Dsyn, which

achieves a similar effect during training as the global dataset
D. In other words, the trajectory of a network trained with
Dsyn should have similar dynamics with the trajectory trained
with D. To be precise, we denote the trajectory trained
on D as a sequence {wt}Lt=0, where L is the length of the
trajectory. In order to reduce the number of unrolling steps
during optimization, we align the trajectory in a segment-by-
segment manner. Without loss of generality, we consider a
segment from wt to wt+s, then the problem becomes the
following: starting from wt, the network should arrive at a
place close to wt+s after being trained for s steps on Dsyn.
We further formulate the data synthesis task into a learning
problem as follows:

min
X,y

Et∼U(1,L−s)[d(w̃,wt+s)] (3)

s.t. w̃ = A(X,y,wt, s) (4)

In the inner loop expressed by Eqn.4, we run the trainer A(·)
that trains a neural network initialized from wt on the synthetic

12179

dataset Dsyn = {X,y} for s steps, which arrives at w̃. In the
outer loop, we minimize the distance between wt+s and w̃, denoted
as d(w̃,wt+s), by optimizing over (X,y). The expectation of
the uniform distribution U is adopted to take into account all the
segments along the trajectory. d(·, ·) is a general distance measure,
which can take the form of euclidean distance or cosine distance,
etc. During the optimization, we treat both (X,y) to be learnable
variables, where X is initialized with random noise, and y is
initialized with equal probabilities over all labels. The detailed
algorithm is shown in Algorithm 1.

Algorithm 1 DataSyn

Require: Global trajectory {wc}L1 , learning rate η, training
rounds N , inner steps s′.

1: Randomly initialize X0 and pair them with y to form the
synthetic dataset.

2: for training iteration n = 1, 2 . . . N do
3: Sample t ∼ U(1, L − s), then take wt and wt+s from the

trajectory.
4: Get the trained paramters w̃ = A(Xn,yn,w

t, s′)
5: Calculate the distance d(w̃,wt+s) and obtain gradient w.r.t

Xn and yn as∇Xnd(w̃,wt+s) and∇yn
d(w̃,wt+s).

6: Update Xn and yn using gradient descent Xn+1 = Xn−
η∇Xnd(w̃,wt+s), yn+1 = yn − η∇yn

d(w̃,wt+s)
7: end for

Output: Optimized synthetic data Dsyn.

Note that since the size of Dsyn is much smaller than D, the
effective step size should have a different scale. Therefore, in
Equation 4, we may increase the number of steps from s to s′ to
account for this scale mismatch.

In this way, the knowledge hidden in the dynamics of the global
model can be transferred to Dsyn, which then acts as an approxima-
tion of the global data distribution to aid the server-side aggregation.

4.2. Overall Algorithm of DynaFed
In this section, we present our DYNAFED that integrates the

data synthesis process into the federated learning framework.
Firstly, to construct the global trajectory on the server, we collect

the global model’s checkpoints from the first few communication
rounds of FedAvg mainly considering the following two factors:
1) collecting a long trajectory induces prohibitive cost due to the
expensive global communication, 2) the change in global model’s
parameters becomes insignificant during late rounds, which makes
it difficult to extract knowledge from the dynamics.

Note that although Dsyn contains rich global knowledge, it is
not sufficient to replace the global data distribution D due to the
following reasons: 1) the objective in Eqn.3 can not be ideally
solved due to the two-level optimization procedure, 2) to make the
scale of the optimization problem acceptable, the size of Dsyn can
not be as large as D, 3) there exists an inconsistency between the
trainer A(·) and the one that produces the global trajectory, i.e.,
FedAvg. Therefore, instead of simply conduct regular training with
Dsyn, we leverage such Dsyn to help aggregation by finetuning the
global model on the server side.

The rundown of the entire algorithm is presented in Algorithm
2. Firstly, the global model’s trajectory in the earliest L rounds is

Algorithm 2 DYNAFED

Require: Client data Dm = {(xi, yi)}|Dm|
i=1 , global parameters

w, client parameters {wm}|M|
m=1. Total communication rounds

C, local steps T , data learning rate η, data training rounds N ,
trajectory length L, inner steps for data synthesis s′.

1: for communication round c = 1, 2 . . . C do
2: Sample active clientsMc randomly. Distribute wc to active

clients and initialize their parameters.
3: for all users m ∈Mc do
4: {wc

m}
|Mc|
m=1 ← LocalTrain(wc, T)

5: end for
6: Clients send updated {wc

m}
|Mc|
m=1 to server.

7: wc+1 ← 1
|Mc|

∑
m∈Mc w

c
m

8: if c = L then
9: Dsyn ← DataSyn({wc}Lc=1, η, s′, N)

10:
11: else if c > L then
12: wc+1← Finetune(Dsyn, wc+1)
13: else
14: Add wc+1 into trajectory list.
15: end if
16: end for

collected and stored on the server. Then, the server executes the
data synthesis procedure to generate the pseudo data Dsyn. In all
subsequent rounds, Dsyn is leveraged on the server to help reduce
the negative impact of deflected client models by finetuning the
global model.

Our method enjoys the following appealing properties:

• In contrast to data-dependent KD methods [6, 33], DYNAFED

extracts the knowledge of the global data distribution from
the global model trajectory, which does not depend on any
external datasets;

• Compared with data-free KD methods [50, 53], DYNAFED is
able to synthesize informative pseudo data in the early rounds
of federated learning without requiring the global model to
be well trained, which significantly helps convergence and
stabilizes training;

• The data synthesis only needs to be conducted once. Besides,
since only a few samples are synthesized, refining the global
model on the server requires negligible time.

Remark 1. We emphasize that our DYNAFED does not raise pri-
vacy concerns given following reasons: 1) we rely on only the
trajectory of the global model’s parameters, which is available
in the conventional setting of all FedAvg-based methods; 2) we
keep Dsyn at the server rather than sending it to the clients; 3) we
extract global knowledge using the global dynamics, rather than
any client-specific information as in [12,17,18,20,47], the derived
Dsyn comprises of information mixed with the entire global data dis-
tribution, thus prevents leakage of client privacy; 4) our DYNAFED

shares a similar flavor as dataset condensation (DC) methods,
which aims to generate informative pseudo data containing global
knowledge, rather than real-looking data. The privacy-preserving
ability of DC was also discussed in previous work [11].

12180

5. Theoretical Analysis
In this section, we present some insights to understand our data

synthesis process from the neural tangent kernel (NTK) theory and
also give the convergence results for DYNAFED. Detailed proofs
are given in the appendix.

In our data synthesis process, we align the segments (e.g., from
t to t + s) of the trajectories trained on D and Dsyn for any t.
Essentially, those segments are the cumulative gradients calculated
using D and Dsyn, which approximate to ∇L(wt,Dsyn)∆t and
∇L(wt,D)∆t. Therefore, we can expect∇L(w,Dsyn) would be
close to ∇L(w,D), which is verified by our experimental result
(left of Figure.6). Given a sample x, if continuous-time gradient
descent is adopted as the training solver, the dynamics of neural
network function trained on Dsyn and D take the forms of{

df(x,wt)
dt

= ∇wtf(x,wt)⊤∇L(wt,Dsyn),
df(x,wt)

dt
= ∇wtf(x,wt)⊤∇L(wt,D).

(5)

which is close to an ordinary differential equation according to
the NTK theory [19]. Note that the right-hand sides of the two
equations in (5) are close if ∇L(w,Dsyn) ≈ ∇L(w,D). In this
case, the following lemma about the continuous dependence of
differentiable equation shows that the neural functions f(x,wt)
learned with pseudo data Dsyn are similar to that learned with real
global data D during the whole training process. This further
indicates that Dsyn achieves similar effect as D during training.

Lemma 1 (Continuous Dependence [42]). Suppose F̃ (t, f) and
F (t, f) are two continuous functions in a region G satisfying

|F̃ (t, f)− F (t, f)| ≤ ϵ,∀(t, f) ∈ G.

Further, we assume F (t, f) satisfy the LF -Lipschitz condition w.r.t.,
f . Let f̃(t) and f(t) be the solutions of initial problems,

df̃

dt
= F̃ (t, f̃) and

df

dt
= F (t, f),

with f̃(t0) = f0 and f(t0) = f0. Then, in a common region
|t− t0| ≤ α, we have the following estimation:

|f̃(t)− f(t)| ≤ ϵ

LF

(
eαLF − 1

)
.

To analyze the convergence of DYNAFED, we need to define
some additional notations and rewrite our method as follows. Sup-
pose with the Dsyn generated from the data synthesis process, in
DYNAFED we run SGD for τ1 and τ2 iterations in each local train-
ing round and finetuning process, respectively. Let the sets I and
J be

I = {t|t = k(τ1 + τ2) + c, k = 0, 1, 2, . . . , c ∈ [τ1]},
J = {t|t = k(τ1 + τ2) + τ1, k = 0, 1, 2, . . .}, (6)

where [τ1] = {0, 1, . . . , τ1 − 1}. Therefore, when t ∈ I, we
perform local training, while when t /∈ I, we conduct finetuning.
J denotes the time index for aggregation. The detailed steps of
DYNAFED can be rewritten as

vm
t+1 =

{
wt

m − ηt∇ℓ(wt
m, ξtm), if t ∈ I

wt
m − ηt∇L(wt

m,Dsyn), if t /∈ I
,

wt+1
m =

{
vt+1
m , if t+ 1 /∈ J∑M
m=1 αmvt+1

m , if t+ 1 ∈ J
,

where ξtm ∼ Dm. Based on the notations, we define a sequence:

w̄t =

M∑
m=1

αmwt
m.

Hence, our algorithm is an integration of FedAvg and a biased GD.
For w̄t, note that w̄t = wt

1 = · · · = wt
M in the finetuning process

and we have the following convergence results:

Theorem 1 (Convergence). For L̃-smooth, µ-strongly convex loss
functions ℓ(·, ·). We assume ∥∇L(w,Dsyn) − ∇L(w,D)∥ ≤
δ∥∇L(w,D)∥+ϵ holds with two small non-negative scalars δ and
ϵ. Let ηt = c

t
for a proper constant c. Then, DYNAFED satisfies

EL(w̄T ,D)− L(w∗,D) ≤ C

T
, (7)

where w∗ is the minimum of L(w,D) and C is a constant, whose
detailed formula is given in the appendix.

More detailed discussions about the convergence result are given
in the Appendix.

6. Experiments
Benchmark Datasets and Experimental Settings. We
conduct experiments over four commonly used datasets: Fashion-
MNIST [43], CIFAR10 [25], CINIC10 [9] and CIFAR100 [25].
Among them, FashionMNIST is a dataset containing grey-scale
images of fashion products. CIFAR10 is an image classification
dataset containing daily objects. CINIC10 is a dataset combining
CIFAR10 and samples from similar classes that are downsampled
from ImageNet [26]. These three datasets contain 10 classes. CI-
FAR100 contains the same data as CIFAR10, but categorizes the
data into 100 classes. For each dataset, we mainly conduct experi-
ments with heterogeneous client data distribution. We follow prior
work [6,33] to use Dirichlet distribution for simulating the non-IID
data distribution, where the degree of heterogeneity is defined by
α, smaller α value corresponds to more severe heterogeneity.

Baseline Methods We consider various state-of-the-art solu-
tions against non-IID data distribution in the context of feder-
ated learning. Specifically, we compare with the following ap-
proaches 1) the vanilla aggregation strategy FedAVG [34]; 2)
regularization-based strategies FedProx [31], Scaffold [24]; 3)
data-dependent knowledge distillation strategies that need external
dataset FedDF [33] and FedBE [6], ABAVG [44]; (4) data shar-
ing [49] or data-free knowledge distillation [53] methods. Note that
we do not compare with [50] since the code is not published. Please
refer to Appendix for detailed settings of the baseline methods.

Configurations Unless specified otherwise, we follow [?,7,15]
and adopt the following default configurations throughout the exper-
iments: we run 200 global communication rounds with local epoch
set to 1. There are 80 clients in total, and the participation ratio in
each round is set to 40%. Experiments using other participation
ratios are in the Appendix. We report the global model’s average
performance in the last five rounds evaluated using the test split of
the datasets. For the construction of global trajectory, we first run

12181

α = 0.01 α = 0.04 α = 0.16
Method FMNIST CIFAR10 CINIC10 FMNIST CIFAR10 CINIC10 FMNIST CIFAR10 CINIC10

FedAVG 74.50±1.32 39.30±3.42 31.60±5.50 81.74±1.98 51.19±2.85 45.35±3.00 89.54±1.51 69.74±1.29 55.40±2.05
FedProx 76.88±1.83 42.13±3.64 32.56±4.59 83.06±2.53 58.93±2.14 46.30±2.87 89.53±1.13 70.20±0.74 57.78±2.08
Scaffold 77.92±0.87 42.04±2.26 34.90±3.34 82.25±1.35 54.23±1.90 46.22±2.18 88.54±0.32 68.57±0.91 54.30±0.83

FedDF∗ 72.36±2.08 39.73±3.98 31.97±4.31 81.65±0.97 54.20±2.93 45.79±2.95 89.70±0.97 70.71±0.94 55.78±1.02
FedBE∗ 72.33±1.79 38.36±3.74 32.04±3.73 81.31±1.25 53.49±2.36 45.50±2.88 89.62±0.75 70.23±0.76 55.42±1.37

ABAVG∗ 75.98±1.99 39.95±1.37 32.75±4.18 84.88±1.84 57.25±3.42 47.39±3.36 89.53±1.12 70.55±2.41 56.02±1.49

FedGen† 75.59±1.12 40.19±2.14 32.59±3.25 81.46±1.08 56.60±1.29 45.57±2.70 89.95±0.89 70.89±0.54 55.34±1.13
FedMix† 81.34±0.68 50.48±1.23 37.15±1.81 84.23±0.50 62.77±1.07 50.22±1.41 89.05±0.24 70.33±0.55 56.74±0.45

DynaFed† 87.52±0.15 65.53±0.34 48.04±0.70 89.45±0.11 70.07±0.12 55.43±0.24 91.35±0.07 74.69±0.14 59.80±0.10

Table 1. Comparison of test performances achieved by different FL methods with different degrees of data heterogeneity α across multiple
datasets. We report the mean test accuracy of last five communication rounds. ∗Methods assume the availability of proxy data. † Methods
are based on data sharing or generation. We observe that our approach outperforms other methods by a large margin, and its advantage is
more prominent on more challenging datasets with higher heterogeneity. Specifically, DYNAFED demonstrates relative improvement over
the FedAvg baseline by 17.5%, 64.5%, 52.0%, and 82.2% on FMNIST, CIFAR10, CINIC10, and CIFAR100, respectively.

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

FMNIST, =0.01

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

CIFAR10, =0.01

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Te
st

 A
cc

ur
ac

y

CINIC10, =0.01

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

CIFAR100, =0.01

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

FMNIST, =0.04

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR10, =0.04

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CINIC10, =0.04

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

0 20 40 60 80 100 120 140 160 180 200
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 A
cc

ur
ac

y

CIFAR100, =0.04

FedSyn
FedMix
FedGen

FedAvg
ABAVG
FedBE

FedDF
FedProx
Scaffold

Figure 2. Visualization of global model’s test performance on various datasets throughout the global communication rounds. We can see that
the global model rapidly converges to a satisfactory test accuracy once Dsyn participates in refining the global model. Furthermore, Dsyn

also helps reduce the fluctuation of model performances between communication rounds, which significantly boosts the training stability.
DYNAFED requires less than 10% communication rounds to achieve comparable performance with the baseline methods.

Method α = 0.01 α = 0.04 α = 0.08 α = 0.16

FedAVG 16.54±2.18 26.56±1.53 34.54±1.02 39.65±0.94
FedProx 18.46±1.05 28.58±1.46 34.82±0.54 40.98±0.49
Scaffold 17.33±1.21 28.46±1.18 35.04±0.35 40.57±0.33

FedDF∗ 16.02±1.94 26.94±1.25 34.77±0.88 39.76±0.44
FedBE∗ 15.78±2.34 28.03±0.34 33.91±0.79 39.45±0.79
ABAVG 16.52±1.98 29.14±0.57 34.66±0.98 41.00±0.23

FedGen† 16.51 ±1.32 27.03±1.14 34.56±0.78 39.96±0.58
FedMix† 23.54±0.96 32.18±0.59 36.30±0.42 41.09±0.14

DynaFed† 30.14±0.19 36.79±0.12 40.02±0.09 42.47±0.06

Table 2. Comparison of test performances on CIFAR100 with
different degrees of data heterogeneity α.

FedAvg [34] and use the checkpoints from the first 20 communi-
cation rounds (L = 20). We set the time difference s between the
start and end checkpoint to 5, and the target checkpoint is averaged
with 2 checkpoints sampled between wt and wt+s. More details can
be found in the Appendix.

6.1. Main Experiments with Data Heterogeneity
We demonstrate the superior performance of our DYNAFED

by conducting experiments on heterogeneous client data across
comprehensive datasets and various heterogeneity values α. Specif-
ically, we use three datasets with 10 classes (shown in Table 1):
FashionMNIST [43], CIFAR10 [25] and CINIC10 [9], heterogene-
ity degree α set to 0.01, 0.04 and 0.16; and CIFAR100 containing
100 classes, with α values 0.01, 0.04 ,0.08 and 0.16 (shown in Table
2). DYNAFED significantly boosts the convergence, stabilizes train-
ing, and brings considerable performance improvement compared
with previous approaches. Specifically, with heterogeneity value
α = 0.01, DYNAFED demonstrates relative improvement over the
FedAvg baseline by 17.5%, 64.5%, 52.0%, and 82.2% on FMNIST,
CIFAR10, CINIC10, and CIFAR100, respectively.

As demonstrated in Figure 2 , the performance of DYNAFED

is rapidly boosted as soon as the synthesized data starts refining
the global model on the server. This verifies that DYNAFED does
not depend on the global model’s performance in data synthesis,

12182

0 40 80 120 160 200 240 280 320 360 400 440 480 520
Local/Finetuning Steps

0.0

0.5

1.0

1.5

2.0

Cl
ie

nt
 D

at
a

Lo
ss

Figure 3. Loss curves over each client’s data throughout local
training and finetuning. Each of the 3 colors represents the loss
over one client’s data. The stars are the global model’s average
losses over all client data after finetuning with Dsyn. During local
training, the client losses quickly converge to near zero. However,
due to deflection caused by heterogeneity, the losses over some
clients’ data dramatically increase after aggregation. Finetuning
with Dsyn decreases those losses and reduces the aggregation bias.

Iteration 0 Iteration 125 Iteration 250 Iteration 500

Figure 4. Visualization of learned synthetic data on 3 classes from
CIFAR10 throughout the optimization process. In the beginning,
the pixels are randomly initialized and contain little information.
As the optimization goes on, some patterns emerge in the synthetic
images but remain unrecognizable.

which is consistent with our analysis in Section 4. This characteris-
tic enables faster convergence to achieve good performance with
fewer communication rounds. As shown in Figure 2, DYNAFED re-
quires less than 20% communication rounds to achieve comparable
performance with the baseline methods.

6.2. Detailed Analysis
We conduct a detailed analysis of DYNAFED and aim to provide

answers to the following questions: (1) Does Dsyn contain informa-
tion about global data distribution while protecting client privacy?
(2) Can we leverage just the dynamics of the early rounds to synthe-
sizeDsyn? (3) How many pseudo samples do we need to synthesize
to ensure effectiveness? (4) Does Dsyn still help convergence under
more severe heterogeneity and longer local training?

Dsyn Contains Global Information and Preserves Privacy.
We conduct experiment with CIFAR10 and set α = 0.01, where
client datasets are extremely non-iid. We track the losses calculated
over each client’s data throughout local training as well as the global
model’s finetuning. During local training, we calculate the client
models’ losses over their own datasets, i.e., Lm(wm,Dm). During
finetuning, we calculate the global model’s losses over each client’s
dataset, i.e., Lm(w,Dm). To prevent cluttering, we randomly se-
lect 3 client datasets for illustration. The result is shown in Figure 3,
each color represents the loss over one clients’ dataset. We observe
that the client models easily overfit during local training due to the
extreme class imbalance. The deflected client models make the
aggregated global model demonstrate high loss values over some

0 50 100 150 200
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Performance with different L

FedSyn (L=10)
FedSyn (L=15)
FedSyn (L=20)

FedSyn (L=25)
FedGen
FedAvg

50 100 150 250 500
Dataset Size

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Te
st

 A
cc

ur
ac

y

Performance with Different Dataset Sizes

=0.01
=0.04
=0.16

Figure 5. Left: The test accuracy curves for different choices of
trajectory length L on the CIFAR10 dataset with α = 0.01. By
leveraging the dynamics of the global model’s trajectory in the first
few rounds, e.g., L ∈ {10, 15, 20, 15}, the derived Dsyn already
helps achieve faster convergence and stable training. In contrast, the
FedGen approach only brings slight performance gain during the
later phase of training due to the dependence on the global model’s
performance. Right: We show the performance of DYNAFED with
different sizes of Dsyn for various α. The performance gain is
significant with just 150 synthesized samples.

clients’ data. Remarkably, we observe that finetuning with Dsyn

is able to recover the global model to a reasonable state, which
achieves small losses over all client datasets. This verifies that Dsyn

contains information of the global data distribution. Furthermore,
Figure 4 presents the synthesized data of CIFAR10, client-specific
information can not be observed.

Dsyn Can be Learned with Early Trajectory. We conduct
experiments with different choices of trajectory length L in left
of Figure 5. We observe that even if with L = 10, the result
is comparable with performance obtained with longer trajectory
L = 25. Compared with the baseline methods, DYNAFED achieves
significant convergence speedup and performance boost. These
results support our claim in Section 4 that our method can take
effect early during training. By contrast, the data-free KD method
FedGen [53] that trains a generator to produce pseudo data starts
to show a slight improvement only in the late stage of training
since it depends explicitly on the global model’s performance when
training the generator.

How the Size of Dsyn Impacts the Performance. As shown
in the right of Figure 5, we conduct experiments with different sizes
of Dsyn and various heterogeneity degrees α. We find that a small
Dsyn suffices for good performance, while larger Dsyn brings only
marginal performance boost. This property not only saves the cost
for synthesizing Dsyn, but also makes the finetuning of the global
model more efficient.

Dsyn is Able to Mimic the Global Dynamics. In the left
of Figure 6, we calculate the cosine distance between the target
checkpoint wt+s and the parameters w̃ trained from wt for s′ steps
with Dsyn, a randomly sampled real dataset of the same size as
Dsyn, and a dataset consisted of noisy pixels, respectively. We
can see that in terms of mimicking the global trajectory, Dsyn not
only significantly outperforms the noise dataset, but also achieves
only half of the distance obtained with real dataset, which is not

12183

α = 0.01 α = 0.04
Method 5 epochs 10 epochs 5 epochs 10 epochs

FedAVG 33.23±3.54 29.93±4.62 50.28±2.17 46.09±2.95
FedProx 42.60±2.30 42.86±2.84 58.40±1.35 54.30±1.98
Scaffold 39.43±1.86 36.52±2.04 55.46±1.25 50.05±1.57

FedDF∗ 31.68±3.16 39.85±3.79 52.31±2.38 50.90±2.53
FedBE∗ 35.49±2.88 34.19±3.34 49.78±1.79 51.34±1.90

ABAVG∗ 37.87±2.57 35.08±3.03 56.81±1.94 52.17±2.32

FedGen† 35.64±2.52 35.03±3.58 57.60±1.55 54.48±2.03
FedMix† 47.36±1.24 41.53±1.37 60.74±0.95 56.35±1.33

DynaFed† 61.45±0.46 59.04±0.64 68.35±0.20 66.30±0.34

Table 3. Test performances on CIFAR10 achieved by different FL
algorithms under various degrees of data heterogeneity and local
training epochs. Total communication rounds of 100 and 50 are set
with local training epochs of 5 and 10, respectively. As can be seen,
DYNAFED significantly surpasses other methods.

CIFAR10 CINIC10
α = 0.01 α = 0.04 α = 0.01 α = 0.04

Method Acc = 0.45 Acc = 0.55 Acc = 0.33 Acc = 0.45

FedAVG 132.0±15.0 117.0±8.0 189.3±10.5 138.7±5.6
FedProx 113.3±16.4 102.0±4.7 156.7±7.0 118.3±4.0
Scaffold 105.0±10.4 100.3±3.5 158.0±5.4 110.0±3.4

FedDF∗ 145.7±13.1 117.3±5.8 180.7±5.0 170.0±7.0
FedBE∗ 165.0±12.7 122.7±4.5 185.3±14.6 174.3±6.8
ABAVG∗ 109.7±5.4 110.7±5.0 150.0±8.4 127.0±5.8

FedGen† 115.7±10.4 110.3±5.7 167.0±12.1 128.3±5.5
FedMix† 77.3±3.7 89.3±3.5 79.0±7.8 82.3±5.5
DynaFed† 22.3±0.6 22.0±1.0 21.3 ±1.5 22.7±1.4

Table 4. Comparison of the number of communication rounds
to reach target accuracy. With the knowledge of global data distri-
bution stored in Dsyn at the server, the convergence speed of our
DYNAFED is significantly accelerated.

accessible in FL setting. This verifies the ability of Dsyn to mimic
global trajectory.

DYNAFED is Robust to Longer Local Training. Longer
local training is generally required in FL to reduce the total number
of global communication rounds. Under different heterogeneity
degrees, we conduct experiments to evaluate the impact of longer
local training epochs on DYNAFED. Specifically, we conduct ex-
periments with total communication rounds of 100 and 50 with ocal
training epochs of 5 and 10, respectively. The results are presented
in Table 3, from which we observe the following: 1) DYNAFED

consistently outperforms other methods by a large margin even
with longer local training epochs; 2) the performance of DYNAFED

is less sensitive to the length of local training, which benefits from
the Dsyn containing information about the global data distribution.
Therefore, DYNAFED is able to achieve similar performance with
less global communication rounds, which is the major bottleneck
in the efficiency of FL.

We further conduct experiments on varying local epochs to
measure the quality of Dsyn. Specifically, we use it to train a
network from scratch and evaluate its test performance. Shown in
right of Figure 6, the quality of Dsyn stays similar with longer local
training and more severe heterogeneity. This further explains the
superior performance of DYNAFED with longer local training.

6.3. Architecture Generalization and Efficiency
To showcase the generalization ability of our approach over

different network architecture choices, we conduct experiments on

α = 0.01 α = 0.04
Method MLP ConvNet MLP ConvNet

FedAVG 65.64±1.69 74.51±1.32 73.26±1.49 81.74±1.98
FedProx 68.09±1.47 76.88±1.83 79.83±1.70 83.06±2.53
Scaffold 67.60±1.53 77.92±0.87 78.09±1.35 82.25±1.35

FedDF∗ 64.59±1.70 72.36±2.08 77.20±1.58 81.65±0.97
FedBE∗ 65.97±1.64 72.33±1.79 75.42±1.35 81.31±1.25

ABAVG∗ 69.19±1.50 75.98±1.99 81.64±1.20 84.44±1.84

FedGen† 68.67±1.45 75.59±1.12 77.94±1.38 56.60±1.08
FedMix † 70.30±0.92 81.34±0.68 81.95±0.64 84.23±0.50
DynaFed† 73.89±0.24 87.52±0.15 83.54±0.42 89.45±0.11

Table 5. Performance comparison across different network architec-
tures. We conduct the experiment on FMNIST dataset using MLP
and ConvNet to demonstrate the generalization of DYNAFED for
different network architectures.

0 10 20 30
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Co
sin

e
Di

st
an

ce

Parameter Cosine Distance
Synthetic Data
Random Real Data
Noise Data

1 5 10 15
Local Training Epochs T

20

40

Te
st

 A
cc

ur
ac

y

Quality of Synthetic Data

=0.01
=0.04
=0.16
=0.32

Figure 6. Left: the cosine distance between the target checkpoint
wt+s and the parameters w̃ obtained by training with different
datasets from wt for s′ steps. We can see that the distance de-
rived using Dsyn is constantly smaller compared with other data.
Right: Test performances of a model trained from scratch using only
Dsyn generated under various local epochs and client heterogeneity.
The two plots together verify the quality of the generated Dsyn.

FMNIST using different network architectures. Specifically, we
choose ConvNet and MLP following [34, 53]. As shown in Table 5,
under various client data heterogeneity, our method demonstrates
superior performances with both network architectures.

Thanks to the rich knowledge of global data distribution con-
tained in Dsyn, using it to refine the global model greatly boosts
the convergence speed of training. As shown in Figure 2, as soon
as Dsyn is used to refine the global model, its performance rapidly
increases to a reasonable accuracy, which reduces many rounds of
communication. In Table 4, we also quantitively compare the con-
vergence speed of different FL algorithms by showing the number
of communication rounds needed to reach the highest test accuracy
achievable by the baselines. As can be observed, our DYNAFED

requires only less than 20% communication rounds to reach a target
accuracy comparable to other methods.

7. Conclusion
We propose DYNAFED to tackle the data heterogeneity issue,

which synthesizes a pseudo dataset to extract the knowledge of the
global data distribution from the dynamics of the global model’s tra-
jectory. Extensive experiments show that DYNAFED demonstrates
relative improvement over the FedAvg baseline up to 82.2% on
CIFAR100. Further, we believe our work is able to provide insights
for extracting global information on the server side, which goes
beyond tackling the data heterogeneity issue.

12184

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro,

Matthew Mattina, Paul N Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regular-
ization. arXiv preprint arXiv:2111.04263, 2021. 2, 3

[2] Divyansh Aggarwal, Jiayu Zhou, and Anil K Jain. Fedface:
Collaborative learning of face recognition model. In 2021
IEEE International Joint Conference on Biometrics (IJCB),
pages 1–8. IEEE, 2021. 1

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kid-
don, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan,
et al. Towards federated learning at scale: System design.
Proceedings of Machine Learning and Systems, 1:374–388,
2019. 1

[4] Christopher Briggs, Zhong Fan, and Peter Andras. Federated
learning with hierarchical clustering of local updates to im-
prove training on non-iid data. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–9. IEEE,
2020. 2

[5] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4750–4759, 2022. 2

[6] Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian
model ensemble applicable to federated learning. In ICLR,
2021. 2, 3, 4, 5

[7] Hong-You Chen and Wei-Lun Chao. On bridging generic and
personalized federated learning for image classification. In
International Conference on Learning Representations, 2021.
5

[8] Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and
Dimitrios Dimitriadis. Heterogeneous ensemble knowledge
transfer for training large models in federated learning. In
IJCAI, 2022. 3

[9] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and
Amos J Storkey. Cinic-10 is not imagenet or cifar-10. arXiv
preprint arXiv:1810.03505, 2018. 5, 6

[10] Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogene-
ity for the win: One-shot federated clustering. In International
Conference on Machine Learning, pages 2611–2620. PMLR,
2021. 2

[11] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free:
How does dataset condensation help privacy? arXiv preprint
arXiv:2206.00240, 2022. 4

[12] Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum,
and Tom Goldstein. Robbing the fed: Directly obtaining
private data in federated learning with modified models. arXiv
preprint arXiv:2110.13057, 2021. 2, 4

[13] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ram-
chandran. Robust federated learning in a heterogeneous envi-
ronment. arXiv preprint arXiv:1906.06629, 2019. 2

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Communi-
cations of the ACM, 63(11):139–144, 2020. 3

[15] Hang Gu, Bin Guo, Jiangtao Wang, Wen Sun, Jiaqi Liu,
Sicong Liu, and Zhiwen Yu. Fedaux: An efficient frame-
work for hybrid federated learning. In IEEE International
Conference on Communications, ICC 2022, Seoul, Korea,
May 16-20, 2022, pages 195–200. IEEE, 2022. 2, 3, 5

[16] Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter
Richtárik. Lower bounds and optimal algorithms for person-
alized federated learning. Advances in Neural Information
Processing Systems, 33:2304–2315, 2020. 2

[17] Ali Hatamizadeh, Hongxu Yin, Holger R Roth, Wenqi Li,
Jan Kautz, Daguang Xu, and Pavlo Molchanov. Gradvit:
Gradient inversion of vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10021–10030, 2022. 2, 4

[18] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and
Sanjeev Arora. Evaluating gradient inversion attacks and de-
fenses in federated learning. Advances in Neural Information
Processing Systems, 34:7232–7241, 2021. 2, 4

[19] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems,
31, 2018. 5

[20] Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al.
Gradient inversion with generative image prior. Advances
in Neural Information Processing Systems, 34:29898–29908,
2021. 2, 4

[21] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kan-
nan. Improving federated learning personalization via model
agnostic meta learning. arXiv preprint arXiv:1909.12488,
2019. 2

[22] Arthur Jochems, Timo M Deist, Issam El Naqa, Marc Kessler,
Chuck Mayo, Jackson Reeves, Shruti Jolly, Martha Matuszak,
Randall Ten Haken, Johan van Soest, et al. Developing
and validating a survival prediction model for nsclc patients
through distributed learning across 3 countries. International
Journal of Radiation Oncology* Biology* Physics, 99(2):344–
352, 2017. 1

[23] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–
2):1–210, 2021. 1

[24] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank J Reddi, Sebastian U Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for on-
device federated learning. In ICML, 2020. 1, 2, 3, 5

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5, 6

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017. 5

[27] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Sur-
vey of personalization techniques for federated learning. In
2020 Fourth World Conference on Smart Trends in Systems,
Security and Sustainability (WorldS4), pages 794–797. IEEE,
2020. 2

12185

[28] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Fed-
erated learning on non-iid data silos: An experimental study.
In 2022 IEEE 38th International Conference on Data Engi-
neering (ICDE), pages 965–978. IEEE, 2022. 2

[29] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive
federated learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10713–10722, 2021. 2, 3

[30] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith.
Ditto: Fair and robust federated learning through personal-
ization. In International Conference on Machine Learning,
pages 6357–6368. PMLR, 2021. 2

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. In MLSys, 2020. 1, 2, 5

[32] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of fedavg on non-iid data.
arXiv preprint arXiv:1907.02189, 2019. 1

[33] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi.
Ensemble distillation for robust model fusion in federated
learning. Advances in Neural Information Processing Systems,
33:2351–2363, 2020. 2, 3, 4, 5

[34] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, et al. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017. 1, 2, 3,
5, 6, 8

[35] Seungeun Oh, Jihong Park, Eunjeong Jeong, Hyesung Kim,
Mehdi Bennis, and Seong-Lyun Kim. Mix2fld: Downlink
federated learning after uplink federated distillation with two-
way mixup. IEEE Communications Letters, 24(10):2211–
2215, 2020. 2

[36] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Hol-
ger R Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N
Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The
future of digital health with federated learning. NPJ digital
medicine, 3(1):1–7, 2020. 1

[37] Micah J Sheller, Brandon Edwards, G Anthony Reina, Ja-
son Martin, Sarthak Pati, Aikaterini Kotrotsou, Mikhail
Milchenko, Weilin Xu, Daniel Marcus, Rivka R Colen, et al.
Federated learning in medicine: facilitating multi-institutional
collaborations without sharing patient data. Scientific reports,
10(1):1–12, 2020. 1

[38] MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong
Park, Mehdi Bennis, and Seong-Lyun Kim. Xor mixup:
Privacy-preserving data augmentation for one-shot federated
learning. arXiv preprint arXiv:2006.05148, 2020. 2

[39] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized
federated learning with moreau envelopes. Advances in Neu-
ral Information Processing Systems, 33:21394–21405, 2020.
2

[40] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H Vincent Poor. Tackling the objective inconsistency problem
in heterogeneous federated optimization. Advances in neural
information processing systems, 33:7611–7623, 2020. 2

[41] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by align-
ing features. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 12196–
12205, 2022. 2

[42] Walter Wolfgang, Wolfgang Walter, and Wolfgang Ludwig
Walter. Ordinary differential equations, volume 182. Springer
Science & Business Media, 1998. 5

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms, 2017. 5, 6

[44] Jianhang Xiao, Chunhui Du, Zijing Duan, and Wei Guo. A
novel server-side aggregation strategy for federated learning
in non-iid situations. In 2021 20th International Symposium
on Parallel and Distributed Computing (ISPDC), pages 17–
24. IEEE, 2021. 2, 5

[45] Yueqi Xie, Weizhong Zhang, Renjie Pi, Fangzhao Wu, Qifeng
Chen, Xing Xie, and Sunghun Kim. Robust federated learn-
ing against both data heterogeneity and poisoning attack via
aggregation optimization. arXiv preprint arXiv:2211.05554,
2022. 1

[46] Yousef Yeganeh, Azade Farshad, Nassir Navab, and Shadi Al-
barqouni. Inverse distance aggregation for federated learning
with non-iid data. In Domain Adaptation and Representation
Transfer, and Distributed and Collaborative Learning, pages
150–159. Springer, 2020. 2

[47] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter
Bartlett. Byzantine-robust distributed learning: Towards opti-
mal statistical rates. In International Conference on Machine
Learning, pages 5650–5659. PMLR, 2018. 2, 4

[48] Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang.
Fedmix: Approximation of mixup under mean augmented
federated learning. In ICLR, 2021. 2

[49] Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang.
Fedmix: Approximation of mixup under mean augmented
federated learning. arXiv preprint arXiv:2107.00233, 2021. 5

[50] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu
Duan. Fine-tuning global model via data-free knowledge
distillation for non-iid federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10174–10183, 2022. 2, 3, 4, 5

[51] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. ICLR, 1(2):3, 2021. 2

[52] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 1, 2

[53] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free
knowledge distillation for heterogeneous federated learning.
In International Conference on Machine Learning, pages
12878–12889. PMLR, 2021. 2, 3, 4, 5, 7, 8

12186

	. Introduction
	. Related Work
	. Preliminary
	. Proposed Method
	. Acquiring Global Knowledge by Data Synthesis
	. Overall Algorithm of DynaFed

	. Theoretical Analysis
	. Experiments
	. Main Experiments with Data Heterogeneity
	. Detailed Analysis
	. Architecture Generalization and Efficiency

	. Conclusion

