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ABSTRACT
Existing research efforts for multi-interest candidate matching in

recommender systems mainly focus on improving model archi-

tecture or incorporating additional information, neglecting the

importance of training schemes. This work revisits the training

framework and uncovers two major problems hindering the ex-

pressiveness of learned multi-interest representations. First, the

current training objective (i.e., uniformly sampled softmax) fails to

effectively train discriminative representations in a multi-interest

learning scenario due to the severe increase in easy negative sam-

ples. Second, a routing collapse problem is observed where each

learned interest may collapse to express information only from a sin-

gle item, resulting in information loss. To address these issues, we

propose the REMI framework, consisting of an Interest-awareHard

Negative mining strategy (IHN) and a Routing Regularization (RR)

method. IHN emphasizes interest-aware hard negatives by propos-

ing an ideal sampling distribution and developing a Monte-Carlo

strategy for efficient approximation. RR prevents routing collapse
by introducing a novel regularization term on the item-to-interest

routing matrices. These two components enhance the learned multi-

interest representations from both the optimization objective and

the composition information. REMI is a general framework that

can be readily applied to various existing multi-interest candidate

matching methods. Experiments on three real-world datasets show

our method can significantly improve state-of-the-art methods with

easy implementation and negligible computational overhead. The

source code is available at https://github.com/Tokkiu/REMI.
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1 INTRODUCTION
Recommender Systems (RS) play a crucial role in various online ser-

vices [8, 15], such as E-Commerce platforms [20, 26, 48, 52, 57]. They

are typically comprised of two stages: candidatematching and rank-
ing [2, 3]. The candidate matching stage aims to efficiently retrieve

thousands of items from the large item corpus via accurately model-

ing user interests, laying the foundation for fine ranking [3, 13, 31].

Due to its fundamental importance and specific requirements such

as high efficiency, candidate matching has attracted increasing re-

search interest [8, 27].

Recently, multi-interest learning-based methods [2, 26] have

shown great potential in improving matching performance. These

methods explicitly generate users’ diverse interest representations

from their behavior sequences, breaking the representation bot-

tleneck of using a single generic user embedding. MIND [26] first

captures the user’s multiple interests through dynamic routing with

Capsule Network [39]. Afterward, ComiRec [2] takes diversity into

consideration and additionally leverages multi-head attention to

encode users’ diverse interests. Several recent works [3, 4] have

further enabled awareness of periodicity, interactivity, and user

profile.
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Figure 1: (a): Performance of different methods with prac-
tical negative sampling sizes, compared with full softmax
(shown as the dashed lines, impractical in real-world scenar-
ios) on Amazon Book. Multi-interest models, i.e., ComiRec
and PIMIRec, suffer fromdramatical degradationwhen using
uniformly sampled softmax. Training with our REMI frame-
work alleviates the problem and further improves perfor-
mance. (b): Visualization of an example of item-to-interest
routing weights of ComiRec and REMI-enhanced version.
REMI helps avoid routing collapse.

Despite various model architectures and information explored

in multi-interest learning, few efforts are devoted to the training

scheme. Previous works generally follow a similar scheme, as de-

picted in Figure 2 (Left). The user behavior sequence is first encoded

into item embeddings and then routed to multiple interest concept

representations. To train these multi-interest representations, a

common practice is to use the positive target item for each user to

select the interest representation closest to the true label. This inter-

est representation is then activated as the user representation and

trained similarly to general candidate matching, where a uniformly

or log-uniformly sampled softmax [8, 21] is applied to efficiently

train the model on a large corpus.

In this work, we REvisit the currently usedMulti-Interest learn-
ing framework and uncover two major problems. First, we raise

doubts about the effectiveness of uniformly sampled softmax in

multi-interest scenarios. While uniformly sampled softmax has

been shown to be effective in training general recommendation

systems [46], it falls short in multi-interest recommendation sys-

tems, such as ComiRec [2] and PIMIRec [4]. As illustrated in Fig-

ure 1 (a), it has significantly worse performance compared to full

softmax within a reasonable sample size range (e.g., below a thou-

sand). This is due to the selected-interest-focused training scheme

in multi-interest learning that the training focuses on a specific

representation of one of the user’s multiple interests instead of

a general representation of the user. A specific interest concept

representation is more susceptible to encountering "easy negatives"

compared to an overall preference representation. For example,

as shown in Figure 2, consider a user whose historical sequence

includes food, electronics, and bags, and the concept related to

“bag” is activated for training based on the target item. If we apply

uniform sampling, most negatives are easily distinguishable from

the representation of the “bag” concept and are therefore “easy

negatives”, even though some of them may be informative with

respect to the overall preference of the user. A lack of informative

hard negatives has been proven to impact training [6, 14]. There-

fore, uniformly sampled softmax is incapable of training expressive

multi-interest representations.

Second, multi-interest models rely on item-to-interest routing

to determine the items that form an interest. This routing module

is usually a multi-head attention [2] or capsule network [26]. Al-

though the multi-head attention-based routing strategy exhibits

higher efficiency and comparable effectiveness than capsule net-

works [2, 4], we observe that it suffers from routing collapse. This
means that each interest representation may only be made up of

one most relevant item instead of the intended all relevant items.

For instance, the representation of interest in “bags” would consist

of only one specific bag, not all related bags in the user sequence.

Figure 1 (b) shows an example visualization of normalized routing

logits with ComiRec-SA [2]. This can result in information loss in

the interest representation from the beginning of its formation, hin-

dering the ability to learn expressive multi-interest representations.

To solve these issues, we propose the REMI framework with

Interest-aware Hard Negative mining (IHN) and Routing Regular-

ization (RR). First, to alleviate the easy negative problem, we design

an ideal distribution that prioritizes, to an adjustable extent, the

hard negative items with higher scores related to the currently

chosen interest concept (Figure 2, Right). However, direct sampling

from this distribution leads to high complexity in computing all

the relevance scores and per-user sampling. Therefore, we further

propose to leverage the Monte-Carlo importance sampling tech-

nique [25, 37] to approximate the above ideal distribution with a few

lines of extra code and negligible computation overhead. For the

Routing Collapse problem, we offer a simple and effective routing

regularization strategy on the variance of item-to-interest routing

weights for each interest. The two modules improve the expres-

siveness of the multi-interest representation from two aspects: the

optimization objective of training and the composition of informa-

tion. As demonstrated in Figure 1, the proposed solution not only

enable the effectiveness of sampled softmax within a reasonable

sampling size but also further improve the achievable performance.

Also, the visualization verifies the effectiveness of REMI in solving

the routing collapse problem.

We conduct extensive experiments on three real-world, large-

scale public recommendation datasets. The results show that REMI

significantly boosts the performance of existing multi-interest can-

didate matching methods when applied to them. In addition, in-

depth analyses of two main components of our framework demon-

strate their effectiveness in solving the targeted problems. Our

contributions are summarized as follows:
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Figure 2: Demonstration of the existing framework (Left) and illustration of different sampling strategies (Right). Although
some items in the uniformly sampled negative items (e.g., bread, computer) can be informative hard negative samples when
training a general user representation for the sequence consisting of food, electronic devices, and bags, they become unrelated
easy negative samples when training the selected interest representation related to “bag” in the existing multi-interest training
scheme. The interest-aware hard negative sampling (IHN) alleviates this problem by prioritizing hard negative samples
related to the current-selected interest with an adjustable degree, which benefits the learning of discriminative user interest
representation.

• We revisit the training scheme of multi-interest learning and

uncover two major problems regarding the current negative

sampling strategy and routing collapse, which significantly

hinder the performance of multi-interest models.

• We propose a simple and effective interest-aware hard nega-

tive mining strategy and routing regularization to solve the

identified issues and improve the expressiveness of the multi-

interest representation from two aspects: the optimization

objective of training and the composition of information.

• We conduct extensive experiments which demonstrate that

REMI significantly improves the existing multi-interest can-

didate matching solutions with a few lines of extra code and

negligible computation overhead.

2 RELATEDWORK
2.1 Candidate Matching
Candidate matching is an essential step in large-scale industrial

RS, as it efficiently filters a subset from a large item pool for subse-

quent fine ranking [3, 13, 31]. Due to its high demand for efficiency,

candidate matching models typically utilize lightweight architec-

ture and avoid candidate awareness during user modeling. In the

early stage, Collaborative Filtering (CF) based solutions [23, 40]

introduce learnable matching between user and candidates and

Neural Collaborative Filtering (NCF) [16] enhances the classical

CF with multi-layer perceptrons. Afterward, the two-tower DNN

structures [8, 19] become highly popular with high computation

efficiency, which avoids early interaction between user modeling

and candidate modeling. In addition, tree-based structures and

graph-based structures have also been explored for deep candidate

matching [28, 58, 59]. For example, PDNP [28] builds a retrieval

architecture based on a 2-hop graph, which enables online retrieval

with low latency and computation cost. These solutions generally

model the user’s preference in one vector, potentially limiting the

representation ability considering the multi-interest nature of users.

2.2 Multi-Interest Learning
Recent research has found that modeling users’ interests as a single

vector may be insufficient to accurately capture the complex inter-

action patterns of users [2, 26]. As a result, multi-interest learning

is gradually gaining more attention in both the matching stage

and ranking stage of RS. Targeting the matching stage, MIND [26]

first adopts a dynamic routing mechanism to aggregate users’ his-

torical behaviors into multiple interest capsules [39]. Afterward,

ComiRec [2] further investigates multi-head attention-based multi-

interest routing for capturing the user’s diverse interests and intro-

duces diversity controllable methods. Under a similar framework,

PIMIRec [4] and UMI [3] incorporate time information, interactiv-

ity, and user profile. Re4 [53] further takes the backward flow into

account to regularize the process. Despite improved architectures

and enriched information, these works generally follow the train-

ing of the general training scheme of candidate matching, where

we identify several problems in our work. For the ranking stage,

DMIN [47], DemiNet [45], and MGNM [42] explore more architec-

tures and enable candidate-aware Click-through Rate Prediction

through a multi-head attention mechanism. Note that in the exper-

imental section, DMIN, DemiNet, and MGNM are not chosen as

baselines due to the inapplicable computational complexity for the

matching stage.
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2.3 Negative Sampling in Recommender
Systems

Negative sampling is crucial in RS because it enables the selection of

a small set of negative examples instead of using all the non-target

items. This reduces the computational cost and speeds up training

while still enabling the model to learn meaningful representations.

In the early stages, Bayesian Personalized Ranking [36] uniformly

samples negative items from items that users had not interacted

with. Later, several studies [17, 43] give popular items higher prob-

abilities of being sampled as negative items to suppress popularity

bias. However, popularity-based solutions cannot effectively help

solve the problem of increasing easy negative samples in multi-

interest learning. MNS [49] mixes batch and uniformly sampled

negatives to mitigate the selection bias but not targets hard nega-

tive samples. Some enhanced methods [10, 29, 34, 56] leverage addi-

tional information to improve negative sampling. Specifically, these

methods produce informative negative samples for RS in certain ap-

plication scenarios with available information such as connections

in social networks [34, 44, 50, 55], user locations [29, 32, 51], item

category information [56], and detailed user feedback [9, 10, 30].

However, these solutions are only applicable in certain scenarios

and cannot produce hard negative samples at scale based on current

user interest representations. Finally, the most related hard negative

sampling strategies are those that produce negative samples accord-

ing to the current user representation [5, 6, 11, 35, 54]. For example,

the work [54] uses a dynamic rejection sampling strategy according

to item ranking, the work [11] leverages score-based memory up-

date and variance-based sampling, and a recent work [6] generates

hard negative samples for sequential recommendation using the

Next Negative Item (NNI) Sampler with Pre-selection and Post-

selection. Generally, these solutions allow dynamic sampling by

developing complex schemes to explicitly perform context-aware

sampling. Our method, in contrast, simply re-weights the loss gen-

erated with uniform sampling and effectively addresses the problem

in multi-interest learning with negligible cost.

3 PRELIMINARY
3.1 Problem Formulation
Suppose we have a set of users denoted asU and a large item corpus

denoted as I. For each user 𝑢 ∈ U, we have a historical behavior

sequence s(u) = (𝑖 (𝑢 )
1
, 𝑖
(𝑢 )
2
, · · · , 𝑖 (𝑢 )𝑛 ) sorted by time, where 𝑛 is the

maximum sequence length and 𝑖
(𝑢 )
𝑡 represents the 𝑡-th item in the

user behavior sequence. The candidate matching stage in RS aims

to efficiently retrieve a subset of items the user is likely to interact

with from the huge item corpus I.

3.2 Existing Framework
3.2.1 Model Architecture. Current solutions [2, 26] provide several
strategies to form the multi-interest extraction network to get the

representation matrices of the multiple interests. Since we focus

on the training scheme, we simply abstract the process with two

steps 1) item representation (including item embedding and op-

tional representation enhancement) and 2) multi-interest routing

(Figure 2).

Let𝑑 denote the hidden dimension of the representation,𝑛 denote

themax sequence length, and𝐾 denote the total number of interests,

we write step 1) as:

H = F (𝑠 (𝑢 ) ), (1)

where F denotes the model function to encode (and enhance) the

items in the user behavior sequence, and H ∈ R𝑑×𝑛 denotes the

encoded (and enhanced) item representations. And the learned

item embedding matrix for the items in the corpus is denoted as

E = [e1, e2, · · · , e | I | ] ∈ R | I |×𝑑
.

Then, step 2) can be formulated as calculating the item-to-interest

routing matrix A ∈ R𝑛×𝐾 followed by obtaining the final multi-

interest representations V𝑢 ∈ R𝑑×𝐾 :

A = G(H), (2)

V𝑢 = HA, (3)

where G is the function to get the routing matrix from the (en-

hanced) item representations.

3.2.2 Training Scheme. During training, an argmax operator is

then used to select the most relevant user embedding vector v𝑢
according to the positive item 𝑖+:

𝑘 = argmax

(
V⊤
𝑢 e𝑖+

)
,

v𝑢 = V𝑢 [:, 𝑘],
(4)

where e𝑖+ is the embedding of the target item 𝑖+, and v𝑢 ∈ R𝑑×1

is the selected interest concept representation. Then, the problem

can be modeled as a classification task. The likelihood of the user

𝑢, with the chosen interest 𝑘 , interacting with the target (positive)

item 𝑖+ can be represented with a softmax function:

𝑃 (𝑖+ |𝑢) = 𝑒v
⊤
𝑢 e𝑖+∑

𝑖∈I 𝑒v
⊤
𝑢 e𝑖

=
𝑒v

⊤
𝑢 e𝑖+

𝑒v
⊤
𝑢 e𝑖+ +∑

𝑖−∈I\{𝑖+ } 𝑒v
⊤
𝑢 e𝑖−

. (5)

The loss function of the model is to minimize the negative log-

likelihood of all the positive pairs (𝑢, 𝑖+) in the training dataset

D:

LSM (𝜃 ) = 1

| D |
∑︁

(𝑢,𝑖+ ) ∈D
−𝑙𝑜𝑔𝑃 (𝑖+ |𝑢) . (6)

Due to the computation complexity of the denominator with

huge amounts of negative items in Equation 5, multi-interest learn-

ing typically follows the common practice in general large-corpus

candidate matching tasks to use a generic sampled softmax tech-

nique [8, 21] with log-uniform sampling or uniform sampling to

train the model. We detailly discuss the sampled softmax strategy

in Section 3.3.

3.2.3 Serving Scheme. For serving, the multi-interest representa-

tions V𝑢 are obtained for each user𝑢. Then each interest embedding

retrieves top-N items from I based on the inner production using

Faiss [22]. Afterward, the final score 𝑓 (𝑢, 𝑖) for the item 𝑖 in the

retrieved set for user 𝑢 is calculated as:

𝑓 (𝑢, 𝑖) = max

1≤𝑘≤𝐾
(𝑣𝑘𝑢

⊤
e𝑖 ), (7)

where 𝑣𝑘𝑢 ∈ R𝑑×1
is the 𝑘-th interest representation. Finally, the

top-N scored items are recommended to the user 𝑢.
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3.3 Sampled Softmax Loss
This section revisits the sampled softmax strategy in amulti-interest

learning context. Sampled softmax function reduces computation

complexity by only considering the positive class and sampled

negative classes. A smaller negative sample size indicates higher

training efficiency. A practical sampling size would be within thou-

sands. Note that in prior works [2, 4], the negative sampling size is

claimed to be 10 in the paper, but their official codes
1 2

show that

the sample size is set to 10 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 per batch, and the negative

samples are shared in the batch. Therefore, the negative sample size

is commonly set to 1280 to pair with one positive training sample

in practice in the prior studies.

There are multiple variants of sampled softmax [8, 21], and the

prior studies utilize the version implemented in TensorFlow [1]:

LSSM (𝜃 ) = 1

|D|
∑︁

(𝑢,𝑖+ ) ∈D
− log

𝑒v
⊤
𝑢 e𝑖+−log𝑄 (𝑖+ )

𝑒v
⊤
𝑢 e𝑖+−log𝑄 (𝑖+ ) +∑𝐿

𝑖=1
𝑒v

⊤
𝑢 e𝑖− −log𝑄 (𝑖− ) ,

(8)

where 𝐿 is the negative sampling size, and 𝑖− is sampled from the

distribution 𝑄 . log𝑄 is the correction term in sampled softmax

and can be simply removed with uniform sampling or the strat-

egy in [21]. In prior works [2–4, 53], 𝑄 is often generic sampling

distributions such as log-uniform and uniform sampling, which

are shown to perform relatively well in general RS learning [46].

Specifically, using log-uniform sampling on the item set sorted by

popularity gives the popular items a higher probability of being

selected as negative samples.

However, in multi-interest scenarios, such a solution does not

perform well due to the selected-interest-focused training scheme in
multi-interest learning. As discussed in section 1, uniformly or log-

uniformly sampled items are more likely to be easy negatives for

the selected specific interest from multiple interests compared with

general user representation, reducing the training effectiveness of

the uniformly sampled softmax function.

4 METHODOLOGY
REMI is a general training framework which can be readily applied

to various multi-interest learning methods [2–4] without architec-

ture modification and boost their performance. In this section, we

detailly introduce two main components of REMI, interest-aware

negative mining (IHN) and routing regularization (RR), which solve

the problem of the increase of easy negatives and routing collapse

in multi-interest learning, respectively. Then we summarize the

overall training objective.

4.1 Interest-aware Hard Negative Mining (IHN)
for Multi-Interest Learning

To alleviate the problem caused by the severe increase of easy

negatives in multi-interest scenarios with generic sampled softmax,

we first design an ideal sampling distribution, followed by a strategy

to approximate the ideal sampling with only a few lines of extra

codes and negligible computation overhead.

1
https://github.com/THUDM/ComiRec

2
https://github.com/ChenGaoDe/PIMI_Rec

Ideal SamplingDistributionDesign.We follow two principles

in designing the ideal distribution:

• The informative negative samples are those the selected interest
concept is likely to be misclassified to interact with.

• The degree of hardness should be adjustable since the optimal
effective hardness of negative samples depends on the sample
size and dataset.

Therefore, we propose a negative sampling distribution𝑞𝛽 , which

is subjective to the chosen interest concept v𝑢 , and assign the hard

negative items with higher probabilities of being sampled. Inspired

by the sampling strategy in contrastive learning [38], we propose

𝑞𝛽 as follows:

𝑞𝛽 (𝑖−) ∝ 𝑒 (𝛽v
⊤
𝑢 e𝑖− ) , (9)

with concentration parameter 𝛽 ≥ 0. The inner product measures

the similarity between the interest and item embeddings. A larger

inner product indicates a greater similarity and a harder example. 𝛽

controls the hardness level for optimal training effectiveness. Then

the objective in the sampled softmax in Equation 8 can be re-written

as:

LSSM (𝜃 ) = 1

|D|
∑︁

(𝑢,𝑖+ ) ∈D
− log

𝑒v
⊤
𝑢 e𝑖+

𝑒v
⊤
𝑢 e𝑖+ + 𝐿E𝑖−∼𝑞𝛽

[
𝑒v

⊤
𝑢 e𝑖−

] , (10)
where the correction term is omitted for simplicity. However, di-

rectly sampling from 𝑞𝛽 also suffers from great computation com-

plexity to calculate all the 𝑒𝛽v
⊤
𝑢 e𝑖− for huge amounts of items. In fact,

its computation complexity is equivalent to full softmax. As a result,

our next research question becomes: Is it possible to approximate

E𝑖−∼𝑞𝛽
[
𝑒v

⊤
𝑢 e𝑖−

]
without explicitly sampling from 𝑞𝛽?

Importance Sampling-based Approximation. To approxi-

mate the ideal distribution at a low cost, we resort to the Monte-

Carlo importance sampling techniques [25, 37] to sample from a

simple uniform distribution 𝑝 as follows:

E𝑖−∼𝑞𝛽
[
𝑒v

⊤
𝑢 e𝑖−

]
= E𝑖−∼𝑝

[
𝑒v

⊤
𝑢 e𝑖−𝑞𝛽/𝑝

]
= E𝑖−∼𝑝

[
𝑒 (𝛽+1)v⊤𝑢 e𝑖− /𝑍𝛽

]
,

(11)

where 𝑍𝛽 is the partition function that can be empirically estimated

over 𝑝:

𝑍𝛽 = E𝑖−∼𝑝
[
𝑒𝛽v

⊤
𝑢 e𝑖−

]
=

1

𝐿

𝐿∑︁
𝑖=1

𝑒𝛽v
⊤
𝑢 e𝑖− . (12)

Since the approximation only re-weights the objective for each

sample and keeps the sampling procedure a batch-wise uniform

sampling, such a method only leads to a negligible computation

overhead. In addition, the implementation only requires a few lines

of extra code and can be readily incorporated into the existing

training framework (pseudocode provided in Appendix A).

Analysis.We then discuss the influence of concentration param-

eter 𝛽 starting from two extreme cases. When 𝛽 = 0, our solution is

equivalent to uniform sampling since all the items have the same

probability to be sampled. When 𝛽 → ∞, the loss function tends to

focus on the hardest negative samples for a certain user since the

hardest samples dominate the calculation of expectation in Equa-

tion 11. Note that focusing on the hardest negative samples does not

necessarily lead to better effectiveness since there are false negative

samples in recommendation scenarios, and easy negatives are also

important for training recommendation models [13]. Choosing a
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proper 𝛽 between two extreme cases to improve the effectiveness

and efficiency of sampled softmax-based training. We include more

empirical case studies on 𝛽 in Section 5.6.2.

4.2 Routing Regularization for Routing
Collapse

This section discusses the Routing Collapse problem and provides a

simple yet effective regularization-based solution.

Routing Collapse. A key module in multi-interest learning is

items-to-interests routing, which is typically achieved with multi-

head attention or capsule networks [2, 26]. Multi-head attention-

based multi-interest routing demonstrates higher efficiency and

comparable performance compared with capsule networks [2, 4],

and therefore they are widely applied as the base structure in re-

cent work [2–4, 53]. However, we observe that after training for

multiple epochs, the interests tend to over-focus on single items in

the behavior sequence, as shown in Figure 1 (b). In this case, only a

small portion of the items in the user history is considered, which

impacts the expressiveness of multi-interest representations from

the beginning of its composition information. The prior study [12]

on attention mechanism also observes similar problems when solely

applying attention without MLP. Such collapse can be viewed as

the model falling to a locally optimal solution.

Routing Regularization. We then propose a simple and ef-

fective solution to avoid Routing Collapse in our scenarios. Unlike

most regularization done in the representation space [41, 53], we

find that the collapse was caused by the sparsity of item-to-interest

routing matrix A ∈ R𝑛×𝐾 , so we introduce the variance regularizer
on the routing weights to eliminate sparsity and effectively address

the problem. Specifically, we calculate the regularization term with

the following equations:

C = (A − Ā)⊤ (A − Ā),
L𝑟𝑒𝑔 = ∥ diag(C)∥2

𝐹 ,
(13)

where Ā is the mean of A along the first axis, C ∈ R𝐾×𝐾
represents

the covariance matrices of routing weights for different interests,

diag(C) represents the extraction and construction of a diagonal

matrix, and ∥ · ∥𝐹 denotes the Frobenius norm of matrices. Overall,

our training objective can be formed as

L = L𝑆𝑆𝑀 + 𝜆L𝑟𝑒𝑔, (14)

where 𝜆 is the hyper-parameter that balances two losses. The infer-

ence procedure is the same as prior works [2, 53], as introduced in

Section 3.2.3.

5 EXPERIMENTS
We conduct experiments on three large-scale real-world datasets

to answer the following research questions:

• RQ1: Can REMI help achieve state-of-the-art performance

on candidate matching?

• RQ2: Can REMI be combined with different multi-interest

learning models and boost their performance?

• RQ3: Can the Interest-aware Hard Negative mining strategy

(IHN) solve the problems regarding sampled softmax for

effective and efficient training?

Table 1: Statistics of datasets.

Dataset # users # items # interactions

Amazon Books 603,668 367,982 8,898,041

Gowalla 65,506 174,605 2,061,264

RetailRocket 33,708 81,635 356,840

• RQ4: Can Routing Regularization (RR) solve the problem

regarding routing collapse?

• RQ5: What is the effect of different components and hyper-

parameters in REMI?

5.1 Experimental Settings
5.1.1 Dataset. We select three large-scale public datasets to evalu-

ate the effectiveness of REMI:

• Amazon [33]
3
. A dataset that consists of product views from

the widely used Amazon platform. We choose the largest

subset Book with various types of books for evaluation. The

maximum sequence length is set to 20.

• Gowalla [7]. A typical checking-in dataset built from a

location-based social networking website. The maximum

sequence length is set to 40.

• RetailRocket4. An E-Commerce dataset that contains mul-

tiple types of user behaviors over a 4-month period. We only

use the view events. The maximum sequence length is set to

20.

The dataset preprocessing follows the prior study [2]. We remove

all items and users that occur less than five times in these datasets.

All the interactions are regarded as implicit feedback. The statistics

of the three datasets after preprocessing are summarized in Table 1.

5.1.2 Training and Evaluation Setup. We follow the prior stud-

ies [2, 4] to partition the training, validation, and test sets with a

ratio of 8:1:1 regarding unique users and train models using the

entire sequence of the users in the training set. For evaluation, we

use the first 80% of the user behavior sequence to infer the user

embeddings and compute the metrics with the remaining 20% items

in the sequence. More details can be found in [2, 4]. We adopt the

widely used metrics, i.e.,Recall,Hit Rate, andNDCG (Normalized

Discounted Cumulative Gain)
5
, to evaluate our proposed solution.

The metrics are computed with the top 20/50 matched candidates.

5.1.3 Baseline Models. We use two types of baselines for perfor-

mance comparison: general candidate matching and state-of-the-art

multi-interest models. The baselines are introduced as follows:

• Most Popular.A basic algorithm that recommends the most

popular items to users.

• GRU4Rec [18]. An RNN-based model that captures sequen-

tial patterns.

3
http://jmcauley.ucsd.edu/data/amazon/

4
https://www.kaggle.com/retailrocket/ecommerce-dataset

5
The calculation of NDCG follows the officially revised code of ComiRec:

https://github.com/THUDM/ComiRec, which is in line with the paper’s description of

the calculation of NDCG but does not align with the results in the original paper.
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• YouTube DNN [8]. A two-tower DNN model that pools

behavior embeddings followed by MLP layers to get the final

user representation.

• MIND [26]. The first multi-interest framework that captures

diverse interests with capsule networks.

• ComiRec-SA [2] An advanced multi-interest framework

that allows diversity control and further introduces multi-

head attention tomodelmultiple interests.We use the ComiRec-

SA version, which demonstrates comparable performance

with the DR version with a stabler and faster training.

• Re4 [53]. An advanced multi-interest framework that takes

the backward flow into account to regularize the process.

Note that the sampling size is set same as other methods to

ensure fairness.

• UMIHN [3]. A variant of UMI. UMI proposes to use user

profiles when generating users’ multiple interests and pro-

poses an HN strategy to enhance training. Since the HN is

shown to be the most effective part of the method and the

user profile is not available in the datasets, we use UMIHN
as our baseline.

• PIMIRec [4]. A model that considers time information and

interactivity among items when modeling user interests.

5.1.4 Implementation Details. We implement our work and base-

line methods with PyTorch 1.8 in Python 3.7. We build REMI on

ComiRec-SA by default for the best efficiency, except for Sec-

tion 5.3. All parameters are set as follows if not otherwise noted:

following [2], the number of dimensions 𝑑 for embeddings is set to

64, the batch size is set to 128, and the maximum number of train-

ing iterations is set to 1 million for all the models. As discussed in

Section 3.3, the batch-wise shared negative training sample size is

set to 128 * 10 as prior works for fair comparison in the main study.

It is worth mentioning that REMI can get comparable performance

with a smaller sample size, which further enables efficient training

in practice. We discuss this in Section 5.4. In the overall compar-

isons (Table 2, 3), we report the best performance with the interest

number 𝐾 ∈ {2, 4, 6, 8} for baseline multi-interest models and 𝐾 = 4

for REMI. In other analysis studies, 𝐾 = 4 is used by default. We

use the Adam optimzer [24] for training. For MIND and Re4, we

grid search the optimal learning rates from {1𝑒 − 3, 3𝑒 − 3, 5𝑒 − 3}
and weight decay from {1𝑒 − 6, 1𝑒 − 5}. We use 𝑙𝑟 = 1𝑒 − 3 for REMI

and other baselines. Other hyperparameters for the baselines are

set according to the original paper. For the hyperparameters for

REMI, we search 𝛽 in {0.1, 1, 4, 10} for different conditions and set

𝜆 to 1𝑒2.

5.2 Overall Performance (RQ1)
We summarize the overall performance in Table 2. Based on the

result, we can make the following observations:

First, the personalized deep learning-basedmodels performmuch

better than MostPopular, indicating the importance of modeling

user history behavior in RS. In addition, vanilla multi-interest meth-

ods (i.e., MIND and ComiRec) do not always outperform the general

learning models like YouTube DNN and GRU4Rec. This is in line

with some prior studies on candidate matching [3], which may be

attributed to the unsuitable training scheme.

Also, the enhanced multi-interest models (Re4 and UMI) help to

improve the multi-interest model compared with basic ComiRec

and MIND, demonstrating the effectiveness of including backward

flow and better training procedures. Note that the advanced train-

ing strategy in UMI, despite a similar name to our IHN strategy,

is from a different aspect. We present a more detailed analysis

and compatibility experiments in Section 5.3. We also observe that

PIMIRec has the best performance among the baselines, in which

the interactivity module demonstrates the most significant per-

formance improvement [4]. It also, to some extent, alleviates the

collapse problem through the early interactions among different

items. Moreover, in our experiment, we notice that Re4 and PIMIRec

require a long training time due to the utilization of complex back-

ward flow and graph structure, leading to efficiency concerns in

these solutions.

Finally, REMI, when built on the simple ComiRec-SA, signifi-

cantly outperforms the state-of-the-art multi-interest models and

general models on all three datasets regarding all metrics. Through

solving two key questions of the multi-interest learning process,

the REMI framework remarkably improves the capacity of existing

multi-interest models without architecture modification or extra

computation burden. These results demonstrate the importance of

the identified problems and the effectiveness of our solutions.

5.3 Enhancement Study (RQ2)
As a general training framework with simple implementation, REMI

can be applied to the existing multi-interest models to further boost

their performance. In this section, we include a comparison of

the original ComiRec-SA [2], PIMIRec [4], UMIHN [3] with their

REMI-enhanced versions. The results are shown in Table 3.

ComiRec represents the basic multi-interest framework with

no additional information or enhancement. We observe improve-

ments from 27.95% to 69.81% on this simple model on the three

datasets. These improvements reflect the importance of the iden-

tified problems and the effectiveness of the proposed solutions in

basic multi-interest learning. They also suggest the potential for

the application of REMI in large-scale industry datasets since it

helps achieve strong performance even with simple and light archi-

tecture. PIMIRec represents an advanced multi-interest model that

integrates additional information (i.e., periodicity) and incorporates

complex architecture such as GNN to tackle the evolutional user

interests. By explicitly regularizing the routing process and incor-

porating effective IHN training techniques, our solution can further

enhance the performance of PIMI. We also combine REMI with

UMIHN. UMIHN improves the training by applying a candidate-

aware calculation of scores instead of selecting one interest for all

candidates as Equation 4. However, it still attaches the same impor-

tance to the uniformly-sampled negative items and also leads to

lower efficiency, while the IHN in REMI approximates an interest-

aware hard negative sampling with negligible cost. The results

show that REMI is compatible with their optimization and leads to

further performance improvement.
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Table 2: Performance comparison of different methods on three datasets. The bold and underlined numbers represent the best
and second-best results, respectively. The last column shows the relative improvement of REMI over the best baseline methods.
We conduct paired t-test of REMI and the best baseline, and the improvement of REMI is significant with 𝑝 ≤ 0.01 for all the
settings.

Dataset Metric Pop GRU4Rec Youtube DNN MIND ComiRec Re4 UMIHN PIMIRec REMI Improv.

Amazon Books

R@20 0.0158 0.0441 0.0467 0.0420 0.0557 0.0597 0.0690 0.0682 0.0826 +19.7%

HR@20 0.0345 0.1004 0.1043 0.0986 0.1142 0.1240 0.1423 0.1411 0.1650 +16.0%

ND@20 0.0143 0.0378 0.0391 0.0357 0.0446 0.0476 0.0527 0.0526 0.0623 +18.2%

R@50 0.0281 0.0706 0.0722 0.0687 0.0863 0.0690 0.1053 0.1056 0.1189 +12.6%

HR@50 0.0602 0.1553 0.1607 0.1533 0.1796 0.1975 0.2059 0.2062 0.2298 +11.4%

ND@50 0.0193 0.0443 0.0457 0.0433 0.0511 0.0576 0.0587 0.0583 0.0657 +11.9%

Gowalla

R@20 0.0231 0.0900 0.0864 0.0901 0.0805 0.0843 0.0961 0.1193 0.1317 +10.4%

HR@20 0.1121 0.3359 0.3211 0.3129 0.2901 0.3104 0.3314 0.3843 0.4145 +7.9%

ND@20 0.0483 0.1433 0.1384 0.1331 0.1210 0.1287 0.1391 0.1603 0.1774 +10.7%

R@50 0.0365 0.1458 0.1388 0.1456 0.1320 0.1396 0.1642 0.1951 0.2062 +5.7%

HR@50 0.1582 0.4577 0.4390 0.4442 0.4086 0.4224 0.4719 0.5207 0.5455 +4.8%

ND@50 0.0569 0.1494 0.1434 0.1424 0.1310 0.1410 0.1505 0.1660 0.1785 +7.5%

Retail Rocket

R@20 0.0129 0.0827 0.1050 0.1171 0.1304 0.1397 0.1519 0.1828 0.2109 +15.3%

HR@20 0.0252 0.1376 0.1711 0.1883 0.1904 0.2103 0.2364 0.2764 0.3144 +13.7%

ND@20 0.0098 0.0517 0.0641 0.0698 0.0689 0.0785 0.0875 0.1025 0.1170 +14.1%

R@50 0.0244 0.1371 0.1608 0.1899 0.1922 0.2194 0.2423 0.2811 0.3214 +14.3%

HR@50 0.0462 0.2132 0.2518 0.2927 0.2895 0.3174 0.3574 0.3969 0.4544 +14.5%

ND@50 0.0139 0.0593 0.0701 0.0795 0.0786 0.0884 0.0974 0.1093 0.1274 +16.6%

Table 3: Generalization experiments. Performance of existing
multi-interest models and their REMI-enhanced version.

Dataset Metric
ComiRec PIMIRec UMIHN

Original +REMI +Δ Original +REMI +Δ Original +REMI +Δ

Books

R@20 0.0557 0.0826 +48.29% 0.0682 0.0834 +22.28% 0.0690 0.0828 +20.00%

HR@20 0.1142 0.1650 +44.48% 0.1411 0.1678 +18.92% 0.1423 0.1672 +17.49%

ND@20 0.0446 0.0623 +39.68% 0.0526 0.0643 +22.24% 0.0527 0.0637 +20.87%

R@50 0.0863 0.1189 +37.77% 0.1056 0.1204 +14.01% 0.1053 0.1206 +14.52%

HR@50 0.1796 0.2298 +27.95% 0.2062 0.2312 +12.12% 0.2059 0.2335 +13.40%

ND@50 0.0511 0.0657 +28.57% 0.0583 0.0673 +15.43% 0.0587 0.0675 +14.99%

Gowalla

R@20 0.0805 0.1317 +63.60% 0.1193 0.1327 +11.23% 0.0961 0.1328 +38.18%

HR@20 0.2901 0.4145 +42.88% 0.3843 0.4231 +10.09% 0.3314 0.4194 +26.55%

ND@20 0.1210 0.1774 +46.61% 0.1603 0.1785 +11.35% 0.1391 0.1772 +27.39%

R@50 0.1320 0.2062 +56.21% 0.1951 0.2143 +9.84% 0.1642 0.2102 +28.01%

HR@50 0.4086 0.5455 +33.50% 0.5207 0.5632 +8.16% 0.4719 0.5571 +18.05%

ND@50 0.1310 0.1785 +36.25% 0.1660 0.1826 +10.00% 0.1505 0.1816 +20.66%

Retail

Rocket

R@20 0.1304 0.2109 +61.73% 0.1828 0.2173 +18.87% 0.1519 0.2155 +41.86%

HR@20 0.1904 0.3144 +65.12% 0.2764 0.3265 +18.12% 0.2364 0.3236 +36.88%

ND@20 0.0689 0.1170 +69.81% 0.1025 0.1210 +18.04% 0.0875 0.1211 +38.40%

R@50 0.1922 0.3214 +67.22% 0.2811 0.3217 +14.43% 0.2423 0.3161 +30.45%

HR@50 0.2895 0.4544 +56.96% 0.3969 0.4587 +15.57% 0.3574 0.4464 +24.90%

ND@50 0.0786 0.1274 +62.08% 0.1093 0.1298 +18.75% 0.0974 0.1259 +29.26%

5.4 Effectiveness of Interest-aware Hard
Negative Mining (RQ3)

In this section, we first present a quantitative analysis of the effi-

ciency and effectiveness of the proposed IHN (Interest-aware Hard

Negative Mining) method for multi-interest model training. After-

ward, we present several case studies to substantiate whether the

IHN method assigns higher weights to those interest-aware hard

negatives.

For a fair comparison, we do not include routing regularization

and compare IHN to the generic uniform sampling and log-uniform

sampling, as well as the state-of-the-art sampling techniques, i.e.,

MNS [49], DNS [54], SRNS [11], and GenNi [6], when applied to

ComiRec-SA. We observe similar results for three datasets, and due

to space limitations, we present the results on the Amazon Book

dataset. IHN consistently outperforms all baselines in multi-interest

learning, as demonstrated in Figure 3 with efficiency similar to
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Figure 3: The effectiveness comparison of different nega-
tive sampling strategies on the Amazon Book dataset in Re-
call@50.

Figure 4: Case Study on Amazon Book. IHN assigns higher
weights to the hard negatives according to the current inter-
est, thusmaking the learning of user interest representations
more discriminative.

uniform sampling. For sampling techniques that exhibit similar effi-

ciency, such as uniform and log-uniform sampling, we observe that

the performance gap between IHN and generic sampling increases

as the negative sampling size decreases, indicating the potential of

IHN in further improving training efficiency with a smaller nega-

tive sampling size without compromising performance. In addition,

the commonly adopted log-uniform loss is found to be inferior to

uniform sampling when dealing with large item candidate pools.
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(a) PIMIRec (b) REMI+PIMI (c) UMI (d) REMI+UMI

Figure 5: Visualization of examples of routing matrices for
PIMIRec, UMI, and their REMI-enhanced versions. REMI
solves the routing collapse problem.

This is due to the fact that the log-uniform distribution assigns

significantly small sampling probabilities to unpopular items in

such cases. Consequently, this exacerbates the popularity bias and

leads to undertrained embeddings for unpopular items.

Next, we present case studies to validate whether IHN indeed
assigns higher weights to interest-aware hard negatives. We

randomly select several users from the Amazon Book Dataset. Since

user interest representations are implicit and can not be directly

visualized, we display the true positive items that can be used to

imply the selected interest concept in the multi-interest learning

framework, as demonstrated in Figure 2. We present the negative

items with the highest and lowest weights assigned by the IHN

method in Figure 4. The left figure shows that when the positive

sample relates to manhood and faith, the highest-weighted items

are hard negatives related to the heroic spirit, while the lowest-

weighted items are entirely unrelated books, such as those about art,

which do not provide useful information for training discriminative

user embeddings. Similarly, in the right figure, when the positive

sample pertains to politics and humanity, particularly feminism, the

highest-weighted negative samples of IHN are also related to poli-

tics but not feminism, providing more granular supervision signals.

In contrast, the lowest-weighted negative samples are unrelated,

such as those about cats. These two examples demonstrate that the

IHN method effectively assigns higher weights to more meaningful

hard negatives that help train discriminative user interest represen-

tation while giving lower weights to entirely unrelated negative

samples.

5.5 Effectiveness of Routing Regularization
(RQ4)

This section verifies the effectiveness of Routing Regularization

without adding IHN to ensure fairness with other methods. We

compared it to other multi-interest regularization methods, includ-

ing Re4 [53] and SINE [41]. SINE regulates multi-concepts in the

representation space, while Re4 uses backward flow to regulate the

training process. However, these methods fail to address the routing
collapse issue and perform worse than our Routing Regularization,

as shown in Table 4. Furthermore, besides the visualization in the

introduction, Figure 1 (b), we also visualize the item-to-interest

routing for state-of-the-art UMI [3] and PIMI [4] in Figure 5, with

and without REMI. Some random samples show that REMI effec-

tively avoids routing collapse for UMI and PIMI, where interests are

no longer composed of one or two items but fuse all corresponding

relevant items from the historical sequence.

Table 4: Comparison of various regularization strategies. We
show the metrics@50 on three datasets. The final column in
each dataset block displays the HR@50 improvement.

Books Gowalla RetailRocket
Method Recall NDCG HR +Δ Recall NDCG HR +Δ Recall NDCG HR +Δ
No Reg. 0.0824 0.0464 0.1661 - 0.1271 0.1246 0.3891 - 0.1818 0.0761 0.2738 -

Rep. Reg. [41] 0.0814 0.0481 0.1712 +3.07% 0.1141 0.1261 0.3935 +1.13% 0.1895 0.0822 0.2939 +7.34%

Re4 0.1008 0.0562 0.1975 +18.90% 0.1182 0.1309 0.4060 +4.34% 0.2088 0.0884 0.3174 +15.92%

RR (Ours) 0.1078 0.0606 0.2135 +28.53% 0.1841 0.1626 0.5067 +30.22% 0.2804 0.1145 0.4028 +47.11%

Table 5: Ablation study of Interest-aware Hard Negative Sam-
pling (IHN) and Routing Regularization(RR). We show the
metrics@50 on three datasets. The final column in each
dataset block displays the HR@50 improvement.

Settings Books Gowalla RetailRocket
IHN RR Recall NDCG HR +Δ Recall NDCG HR +Δ Recall NDCG HR +Δ

✗ ✗ 0.0814 0.0481 0.1661 - 0.1271 0.1246 0.3891 - 0.1818 0.0761 0.2738 -

✓ ✗ 0.1008 0.0562 0.1975 +18.90% 0.1608 0.1525 0.4715 +21.17% 0.2559 0.0907 0.3307 +20.78%

✗ ✓ 0.1078 0.0606 0.2135 +28.53% 0.1841 0.1626 0.5067 +30.22% 0.2804 0.1145 0.4028 +47.11%

✓ ✓ 0.1189 0.0657 0.2298 +38.35% 0.2060 0.1783 0.5455 +40.19% 0.3124 0.1274 0.4544 +65.96%

Table 6: Study on the interest number K. We show the met-
rics@50 on three datasets.

Books Gowalla RetailRocket
K HR Recall NDCG HR Recall NDCG HR Recall NDCG

2 0.2182 0.1129 0.0625 0.5503 0.2059 0.1786 0.4461 0.3181 0.1241

4 0.2298 0.1189 0.0657 0.5455 0.2062 0.1785 0.4544 0.3214 0.1274
6 0.2340 0.1216 0.0667 0.5515 0.2065 0.1790 0.4550 0.3210 0.1267

8 0.2360 0.1220 0.0673 0.5565 0.2106 0.1793 0.4470 0.3193 0.1254

5.6 Ablation Study and Hyper-parameter Study
(RQ5)

5.6.1 Ablation Studies. Here we present a detailed analysis of the

effect of Interest-aware Hard Negative Mining (IHN) and Routing

Regularization (RR) (Table 5). Through solving two key problems

in Multi-Interest Recommendation, IHN and RR independently

improve performance remarkably. Combined, they boost the per-

formance with a 38.35% to 65.96% improvement in Hit Rate@50

on the three datasets. Noteworthy, these improvements come with

negligible costs of computation and latency because the two pro-

posed strategies only modify the training objective of the original

ComiRec-SA model by re-weighting the loss and adding a variance-

based regularization term.

5.6.2 Hyperparameters Studies. In this section, we thoroughly

study three hyperparameters in REMI: the interest number 𝐾 , con-

centration parameter 𝛽 , and balance parameter 𝜆.

The interest number 𝐾 . First, we show the performance of

different interest numbers K of REMI in Table 6. In the study, we fix

the concentration parameter 𝛽 and balance parameter 𝜆 to be 1 and

1e2, respectively. Generally, REMI demonstrates better performance

with a larger 𝐾 , indicating that REMI can leverage the strength of

multi-interest encoding and generate more representative and di-

verse interests when the interest number grows. Furthermore, the

optimal number of interests also varies depending on the dataset.

For instance, in the case of RetailRocket, where the average user

sequence length and the item corpus are relatively small, four in-

terests results in the best performance.
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Figure 6: Study on balance parameter 𝛽 and 𝜆. We show Hit Rate@50 and NDCG@50 on three datasets.

The concentration parameter 𝛽 .We investigate 𝛽 in the range

of 0.1 to 10 to enable its exponential coverage to cover a majority

of values, as shown in Figure 6. In the study, we fix the balance

parameter 𝜆 and interest number 𝐾 to be 1e2 and 4, respectively.

We observe that larger 𝛽 does not necessarily lead to improvement.

It aligns with the analysis in Section 4.1 that easy negatives are

also important to supervise the training of RS, and the hardest

samples might be false negatives. Moreover, the optimal choices of

𝛽 for different datasets differ. Specifically, for Amazon Book and

RetailRocket, the optimal 𝛽 in the set is 4, while setting 𝛽 as 1

produces the best performance for Gowalla. This can be attributed

to the different characteristics of the dataset, such as the property of

items. The result also demonstrates the importance of an adjustable

𝛽 under different scenarios.

The balance parameter 𝜆. Figure 6 presents the Hit Rate@50

and NDCG@50 of REMI with different 𝜆. In order to balance the loss

between two differing magnitudes, we explore the effects of varying

the magnitude of 𝜆. In the study, we fix the interest number 𝐾 and

concentration parameter 𝛽 to be 4 and 1, respectively. It shows that

as 𝜆 increases, the performance first increases and then decreases.

That aligns with our intuition that we need to properly select 𝜆 to

avoid routing collapse while not influencing the training to force the
routing to be average. We roughly tune it from {1𝑒1, 1𝑒2, 1𝑒3, 1𝑒4}
and fix 𝜆 to be 1𝑒2 for other studies.

6 CONCLUSIONS
This work revisits the existing training scheme of multi-interest

learning and reveals the issues of increased easy negatives and

routing collapse. To address these challenges, we propose REMI as

a general training framework. REMI first mitigates the problem of

easy negatives with an ideal interest-aware hard negative sampling

distribution and an approximation method to achieve the goal at a

negligible computational cost. REMI also incorporates a novel rout-

ing regularization to avoid routing collapse and further improve the

modeling capacity of multi-interest models. Extensive experiments

demonstrate that training with the REMI framework significantly

boosts the performance of existing methods. We hope this training

framework will further contribute to future research on promising

multi-interest learning and highlight the importance of exploring

training procedures in related fields.

A IMPLEMENTATION OF IHN
We provide PyTorch-style pseudocode in Algorithm 1 for our pro-

posed IHN, compared with the original uniformly sampled softmax.

Algorithm 1 IHN.

1: # pos : exp of inner product for the positive item

2: # neg : exp of inner products for the sampled negative items

3: # beta : concentration parameter

4:

5: # objective with uniform negative sampling

6: Neg = neg.sum( )
7: loss_uniform = -log(pos / (pos + Neg))

8:

9: # objective with IHN

10: imp = (beta* log(neg)).exp( )
11: Neg = (imp*neg).sum( ) / imp.mean( )
12: loss_IHN = -log(pos / (pos + Neg))
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